Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Societal adaptation to rising sea levels requires robust projections of the Antarctic Ice Sheet’s retreat, particularly due to ocean-driven basal melting of its fringing ice shelves. Recent advances in ocean models that simulate ice-shelf melting offer an opportunity to reduce uncertainties in ice–ocean interactions. Here, we compare several community-contributed, circum-Antarctic ocean simulations to highlight inter-model differences, evaluate agreement with satellite-derived melt rates, and examine underlying physical processes. All but one simulation use a melting formulation depending on both thermal driving (T ⋆) and friction velocity (u⋆), which together represent the thermal and ocean current forcings at the ice–ocean interface. Simulated melt rates range from 650 to 1277 Gt year−1 (m = 0.45 − 0.91 m year−1), driven by variations in model resolution, parameterisations, and sub-ice shelf circulation. Freeze-to-melt ratios span 0.30 to 30.12 %, indicating large differences in how refreezing is represented. The multi-model mean (MMM) produces an averaged melt rate of 0.60 m year−1 from a net mass loss of 842.99 Gt year−1 (876.03 Gt year−1 melting and 33.05 Gt year−1 refreezing), yielding a freeze-to-melt ratio of 3.92 %. We define a thermo-kinematic melt sensitivity, ζ = m/(T ⋆ u⋆) = 4.82 × 10−5 °C−1 for the MMM, with individual models spanning 2.85 × 10−5 to 19.4 × 10−5 °C−1. Higher melt rates typically occur near grounding zones where both T ⋆ and u⋆ exert roughly equal influence. Because friction velocity is critical for turbulent heat exchange, ice-shelf melting must be characterised by both ocean energetics and thermal forcing. Further work to standardise model setups and evaluation of results against in situ observations and satellite data will be essential for increasing model accuracy, reducing uncertainties, to improve our understanding of ice-shelf–ocean interactions and refine sea-level rise predictions.more » « lessFree, publicly-accessible full text available February 18, 2026
-
Abstract. Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period 2000 to 2018. This reveals (a) an overall trend of -882±824 km2 yr−1 (-0.19±0.18 % yr−1) and (b) eight distinct regions in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18-year period and four negative. Positive trends are seen in East Antarctica and in the Bellingshausen Sea, with this region claiming the largest positive trend of +1198±359 km2 yr−1 (+1.10±0.35 % yr−1). The four negative trends predominantly occur in West Antarctica, with the largest negative trend of -1206±277 km2 yr−1 (-1.78±0.41 % yr−1) occurring in the Victoria and Oates Land region in the western Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system, which are vulnerable to climate variability and change. It will also inform a wide range of other studies.more » « less
An official website of the United States government
